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Abstract
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I Introduction

Price discovery is an essential function of financial markets. When an asset is simultaneously
traded in multiple markets, Hasbrouck (1995) provides the first model to compare price discovery across
markets. With the proliferation of high-frequency trading (HFT), Hasbrouck (2021a) shows that measuring
price discovery requires returns at ultra-high frequencies, e.g. 10 microseconds. In the Hasbrouck model,
price discovery is allocated to individual markets, with the sum across all markets being 100%. In this
study, we propose a model that allows common reaction to new information across markets, and estimate
the common as well as market-specific information flows. We draw comparison with price discovery
estimates in Hasbrouck (2021a), and show that the common information accounts for over 60% of the

total information flow at intervals longer than 10 milliseconds.

The literature on measuring the information content of stock returns started with a series studies
by Hasbrouck (1991a, 1991b, 1993). The models decompose stock returns into a random-walk component
reflecting changes in expectation due to new information, and a serially-correlated noise component. The
information content of stock prices is measured by the variance of the random-walk return component.
Hasbrouck (1995) extends this information measure to multiple markets that trade the same asset: “A
market’s contribution to price discovery is its information share, defined as the proportion of the efficient
price innovation variance that can be attributed to that market” (p1177). Hasbrouck (2002) provides
further justification for the economic interpretation of the random-walk return, supporting the use of its

variance as an information flow measure.

A key assumption of the Hasbrouck model is that all information, public and private, is priced in
one of the markets first, and then propagates across markets. However, when returns are correlated
contemporaneously across markets, it is difficult to attribute price innovations (information) to one
particular market. Hasbrouck (1995) recommends shortening the sampling interval to reduce cross-
market correlations, and using the triangularization of the covariance matrix to estimate the upper and
lower bounds of the information shares. He estimated information shares of stock exchanges in 1993
using 1-second interval. Hasbrouck (2021a) shows that in 2016, the upper and lower bounds converge
when returns are sampled at 10 microsecond intervals. Ultra-high frequency sampling helps to attribute
return innovations to a particular market. It also creates difficult econometric issues, e.g. extremely long
lags in the econometric model, millions of parameters to be estimated, high computation cost, and low

numerical accuracy in estimating millions of miniscule changes.
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Ultra-high frequency sampling creates two additional problems in measuring price discovery
across markets. Suppose there are two markets A and B trading the same stock and a price-relevant public
news is released, e.g. a report of a new COVID variant. Investors are racing to submit or revise orders.
The first problem is that the initial price change in each market is unlikely to reflect the new information.
The race is won by high-frequency trading (HFT) firms hitting stale orders. As argued by Budish et al.
(2015), if there are N HFT firms with equal speed and one of them is trying to revise its quotes, the stale
quote is hit with probability (N-1)/N. The stale bid is hit if it is bad news, and the stale ask is hit if it is good
news. Therefore, the price impact of HFT is in the direction of the news, as shown by Broggard et al.

(2014). But the first trade is at the stale price: the return does not reflect the new information.

The second problem is that price innovations in slower markets are partially attributed to the
fastest market, even when all markets are reacting to the same news. If A is first hit at time t and B is hit
at t+1, A is considered the price leader in the vector error correction model (VECM): B’s price change is
partially attributed to A through the return lead-lag relation. Price innovations in market B are
underestimated. When sampling at ultra-high frequencies, price discovery becomes sequential across
markets, and innovations in slower markets are underestimated. Hasbrouck (1995) observes that “the
information share measures ‘who moves first’ in the process of price adjustment”. Putnins (2013) reports
that “the vast majority of the literature takes the view that a price series dominates price discovery if it is

the first to adjust to new information about the fundamental value”.

This study mitigates the above problems by reducing sampling frequency and allowing multiple
markets to react to news in the same period. We decompose price innovations into a component that is
common across markets and a market-specific component that is contemporaneously uncorrelated. Our
approach offers three benefits. First, we estimate the common information flow extracted from the
simultaneous price reactions in multiple markets. It captures the price impact of any price-relevant public
signals, from macro and company announcements to high-frequency order flows and trades. It also
captures the price impact of common order flows which may carry private information.! The separation
of the common versus market-specific information shares is motivated by the observation that public
information is the main source for price-relevant information, and different markets do react to public

information almost simultaneously. It is also motivated by the cross-market price cointegration in the

1 An example of common order flows is inter-market sweep orders (ISO) which are simultaneously routed to multiple
markets to be filled against the displayed size. Chakravarty, et al. (2012) suggests that I1SOs are used by informed
institutional investors to split large orders into smaller ones for fast trading.
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VECM, which implies that price innovations in different markets should have a large common component.
The common information share provides a natural measure for the degree of information integration
across markets at different time intervals. The comparison of the common vs market-specific information

shares at different time intervals provides new insight into the price discovery process.

Second, by allowing for contemporaneous return correlations and estimating the common
information, we avoid the need for ultra-high frequency sampling, and the bias in estimating information
flow in favor of the fastest market. As discussed above, ultra-high frequency sampling implies that news
is spread sequentially across markets and the VECM implies that slower markets learn from the price
change in the fastest market, when all markets are simultaneously reacting to the same news. By using
sampling intervals at least 1000 times of 10 microseconds, we allow multiple markets to change price in
the same interval, perhaps even multiple times. The common component of the cross-market price
changes is defined as the common information. After controlling the common information, information
embedded in market-specific order flows can affect subsequent price changes in other markets. In our

model, which market moves first is unimportant.

Third, our use of longer sampling intervals avoids the difficult econometric issues associated with
ultra-high frequency sampling, e.g. Hasbrouck (2021a). At sampling intervals of 0.01 to 2 seconds, we can
estimate all parameters of the model with very low computation cost. After accounting for the common
return innovations, market-specific information shares are uniquely estimated without invoking Cholesky
factorization. Our model with even longer intervals, e.g. daily, can be applied to any informationally linked

markets, e.g. exchange rates against USD.

Our main empirical strategy is to draw comparison with Hasbrouck (2021a) where the common
information share is zero. We estimate the information shares of IBM across the listing exchange (NYSE)
and other exchanges from Oct 3 to Nov 11 in 2016. Our main finding is the high common information
share. At sampling intervals of 0.01 second, the common information share between the listing and other
exchanges is 66%, the listing exchange has 16% information share, while the other exchanges together
account for 18%. The common information share increases to 80% at 0.1 second, 90% at 1 second, and
94% at 2 second intervals. The high common information shares reflect the high cross-market return
correlations, which are 0.455, 0.617, 0.757, and 0.816 at intervals of 0.01, 0.1, 1, and 2 seconds
respectively. Malceniece et al. (2019) show that HFT has sharply increased return correlations across

different stocks, and the increase is mainly due to correlated trading strategies of HFT.
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For IBM stock from Oct 3 to Nov 11, 2016, Hasbrouck (202143, Table 7) reports a 66% information
share of quotes and a 34% information share of trade prices at 10-microsecond intervals. At sampling
intervals of 0.01, 0.1, 1, and 2 seconds, our estimates of the common information shares between quotes
and trade prices are 58%, 74%, 85%, and 89% respectively. After accounting for common information, the
quote information share ranges from 9% (2 seconds) to 23% (0.1 second) and the trade information share
ranges from 1.1% (0.1 second) to 2.4% (2 seconds). When the model allows common information, trade
price loses almost all of its information content but quote retains a significant portion of its information
content. The dominance of quotes over trade prices, especially at high frequencies, is consistent with 14
times more quotes than trades; Hasbrouck (2021a, Table 2). This sharp difference in quotes and trades
may also explain why at different sampling intervals, the common information shares between quotes
and trade prices are consistently lower than the common information shares across different markets.

Quotes are more evenly distributed across markets, with 33% on NYSE and 67% on other exchanges.

Beyond the comparison with Hasbrouck (2021a), we also estimate historical common information
shares of IBM at 1-second intervals in 2000 and 2008. Since 2000, at least three factors have helped to
increase cross-market return correlations, therefore the common information flow. The first is the rising
trading speed that synchronizes prices at different exchanges. The second is the proliferation of trading
platforms: IBM trading was concentrated on the NYSE in 2000 but spread more evenly across trading
platforms. The third is the increased intensity of news arrivals, drawing attention and reactions from more
investors. Indeed, we find that in 2000, the common information share is low at 11.8%, with the NYSE
dominating the information share. HFT proliferated following the pass of Reg NMS in 2005. The common
information share rises to 67% in 2008. The continued improvement in HFT technologies and strategies

further increases the common information share to 90% in 2016.

The paper is organized as the following. Section Il presents the econometric model and estimation
procedure. It draws theoretical comparison between the proposed and the existing information share
measures. Section lll reports data and summary statistics. Section IV estimates the proposed information

shares and draws empirical comparison with existing measures. Section V concludes.

1l. Measuring common and market-specific information flows

This section presents our measures for common and market-specific information flows. We start
with a summary on measuring information flow through a vector error correction model (VECM). A factor
structure is then proposed to separate the VECM residuals into common and market-specific components.
The common and market-specific information shares are jointly determined by the coefficients of the
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factor structure and the VECM residuals. We provide a detailed discussion on identification and inference,

and compare the proposed information shares with the existing ones.
1.1 Measuring information flow

Suppose that an asset is simultaneously traded in n markets indexed by i =1, ...,n. Let p; =
[P1t, -, Pn,e]’ be the vector of log prices prevailing in the n markets at time ¢ (the end of a period). Let J,
be the information set generated by {p;, p;_1, --- }. Let Ap; = p; — p¢—1 be the return vector for the time

interval (t — 1, t]. Since all prices are for the same asset at the same time t, p; can be described as
(1) Pt = taMy + Uy,

where 1, is a n-dimensional vector of ones; m; is a scalar martingale relative to J; that represents the
efficient (log) price; u; is the n-dimensional stationary pricing noise that may correlates with the efficient
price change Am; and may be autocorrelated. While m; embodies the underlying value of the asset, the
stationary noise u; is transient such that p; does not deviate from m; for long. Typically in the literature

of price discovery, attempts are made to decompose Am, into the contributions from n markets.

Following Hasbrouck (1995), we assume that the dynamics of the log prices in p; can be described
by a vector autoregressive (VAR) model: A(L)p; = &, where L is the lag operator; A(L) is a n X n matrix
polynomial in L with order K; the roots of |A(z)| = 0 are either outside the unit-circle or equal to one;
and &; is a n-dimensional martingale difference (MD) process relative to J; with variance matrix Q. The
law of one price implies that the log prices are cointegrated with the cointegrating matrix B’ =
[th—1, —In_1], where L,,_; is the identity matrix of size n — 1. Thus B'p; = B'u, is stationary by (1). The

VAR model A(L)p; = &; can be expressed as the vector error correction model (VECM):

(2) Ap, —TjApe_q — - =T 1Ap_gy1 — aB'proy = &,

where A(L) = ®(L)(1 — L) —af'L; ®(L) = I, — T} L — - —Tx_1LX"1; A = 1 — L; a is the adjustment
matrix (n X (n — 1)) with full column rank; I; are the coefficient matrices (n X n). Here, & represents
price innovations in different markets. In general, the components in &; are correlated across markets and
the variance matrix Q is dense. Since [ is known, the parameters (I}, ...,[x_1, @, Q) can easily be

estimated by ordinary least squares.

Inthe VECM in (2), the log price vector p; can be represented as a moving average of the reduced-

form shock &;, known as the Beveridge-Nelson decomposition,
(3) pr=Do+¥Xi e +u with U = Xito Cigej,
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where py is the initial price; W is a constant matrix; C; exponentially tends to zero as j increases. Here, u;

is the pricing noise, as indicated in (1). Johansen (1995, Theorem 4.2) shows that
(4) Y=g [a) (DB, ] ), Po = PLMy,
where M, is a scaler dependent only on the information set at t = 0; 8, is an orthogonal complement of

B such that 1B = 0 and [B, B, ] is invertible (similarly for a; of a). Given that B’ = [t,—1, —I—1], BL
may simply be chosen as 5, = t,. Further, @, may be chosen as the eigen vector associated with the zero

eigen value of aa’'.
The vector of the log efficient price is defined as (see Lehmann (2002))
My = ]11_{{)10 E@e4jlT0) = Do + W Xioq & = tu{ifig + [a) (D] M) Xioy &)
The law of one price implies that there is only one efficient price across all markets:
(5)  me =g+ [l (D] el Bisy &,
which underlies all prices in p;. The efficient price change is given by
(6) Amy =m, —m,_y = [a] P(Di,] el = Mg,
where b’ = [hy, -, h,] = [} ®(1)1,] 1. The total information flow across ALL markets is Var(Am,)

estimated over a period, e.g. a trading day. If (1 is diagonal, i.e. g;  is uncorrelated with ¢; ; for all j # i,
Var(Am,) = I, h?0? where o is the diagonal elements of Q. In this case, the same information is
priced sequentially across different markets. If markets react to the same information in the same period,
the components in &; are correlated and the variance matrix () is dense, and it is difficult to attribute
Var(Am,;) to individual markets. Hasbrouck (1995, p1183) advocates the use of high-frequency data to
enhance the sequential nature of price discovery across market. It would reduce cross-market return

correlations, and maintain Var(Am;) ~ Y-, h?a.

11.2 Common and idiosyncratic information shares

Our method to separate common versus idiosyncratic information follows closely to Yang (2017)
who studies effects of macroeconomic shocks. We assume that return innovation in market i, &; ¢, is the
sum of a common shock that influences all markets, and an idiosyncratic shock that only affect market i

contemporaneously. Therefore, the reduced-form shock to market i has the factor error structure

(7) & = 6ift + oM, i=1,..,n
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where (§;, g;) are constant parameters; f; is the common shock; 7; + is the idiosyncratic shock; f; and 1;
are uncorrelated. Both f; and 7; ; are MD relative to J, with variance one. The common shock f; captures
the effect of the latent public signals actioned by all markets in period t, or common order flows across
markets driven by private information. The idiosyncratic shock n; ; represents the information embedded
only in market i’s order flows, because some investors may prefer to trade in a particular market with low

fee or liquidity rebate. It is not contemporaneously correlated with returns in other markets.
The factor error structure can also be presented in matrix form
(8) & = 8f, +31/%n,,

where the common shock f; is a scalar MD process with variance one; the idiosyncratic shock vector n; is
a MD process with variance I,; £ = diag[cZ, -, 0] and § = [84, ..., 6,,]’; f; and i, are uncorrelated. The
factor error structure (8) can be tested against data. Under (8), the correlations among the reduced-form

shocks in & are completely explained by the presence of f;, and the variance of &; is constrained to be
(9) Q=466"+12.
As () can be estimated from the reduced-form model (2), the restriction (9) allows us to test whether or
not (8) fits data (see Section 2.4 below).

With the factor error structure, the efficient price change in (6) can be decomposed as
(100  Amg = [a] PV, ] e = W'6f, + RNEY?n, = W'6f, + Xiey hioiniy,

where h' = [hy, -, hy] = [@, (D, ] al, K6 = Y™, h;6; and K'EY? = [hy0y, -+, hyoy]. Clearly, h'S
and h'2'/2 characterise how the efficient price change is influenced by the common shock ft and
idiosyncratic shocks in 1, = [11¢,...,Mn ] respectively. For instance, hyoy is the effect of the first
market’s idiosyncratic shock 1, . on the efficient price change while holding the prices of other markets
fixed. Since the shocks in n; and f; are uncorrelated, the variance of the efficient price change can be

unambiguously decomposed into the contributions of the common shock and idiosyncratic shocks
var(Am,) = (W'8)? + h'Th = (K'6)? + X1, h?0?.

The contribution of the common shock to var(Am,), termed the common information share (CIS), is

_ (n'8)°
1) CIS = Grmmer 7o

The contribution of market i to var(Am,), termed the market-specific information share (MIS), is
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(12)  MIS, = — Mo
L (h’5)2+2}?=1h]2.a]?’

i=1,..,n

Clearly Z?ﬁl MIS; + CIS = 1. The diagonal structure of X in (8) makes it easy to estimate market i’s
idiosyncratic information flow and information share. We do not need to invoke Cholesky decomposition

to estimate idiosyncratic market information share.

In summary, our information shares are based on two testable assumptions: (i) the log price
vector p, fits the VECM model (2); (ii) the reduced-form error &, fits the factor error structure (8). When
these assumptions are met, our information shares have clean interpretations. We now consider the

identification and inference of (h, §, aiz).

11.3 Identification and inference

As h in (10) depends only on the parameters of the reduced-form VECM in (2), its estimation is
straightforward. The 2n parameters in (10) can potentially be solved from (9), where the symmetric
matrix (L has n(n + 1)/2 free elements that are estimable from (2). Therefore, heuristically, § and X can
be recovered from A whenn(n + 1)/2 > 2n,i.e. n > 3. However, comparing the number of parameters
against the number of equations in (9) is not sufficient for identifying § and X. We rely on Anderson and

Rubin (1956, Theorem 5.5) for identification, which is given below and tailored for our notation.

Theorem 1 (Anderson and Rubin). The parameters in (8, X) in (8) are locally identifiable if and only if (i)

n = 3; (ii) there are at least three non-zero elements in §.

Here, the meaning of “locally identifiable” is that the parameters in (8, X) is uniquely identified only in a
neighbourhood of the true parameter point, because there is always a “remote” parameter point (=6, %)
that is observationally equivalent to (6,Z). For our information measures in (11) and (12), this
indeterminacy is immaterial as &; is in squared form. Given that the parameters [¢7, ..., 5] can be any
non-negative values, this theorem also covers the cases where some elements of Ap; do not subject to

idiosyncratic shocks (when aiz = 0 for some i).

Other restrictions can also be imposed on (6, X). For example, an interesting restriction is that
the elements in § are identical: §; = --- = §,,, or the impact of the common shock on each market is the
same. This is particularly useful for the case n = 2, where conditions in Theorem 1 are not met, and the

additional restriction §; = §, can be imposed to achieve identification.

We use the maximum Gaussian quasi likelihood to estimate the parameters of the model defined

in (2) and (8). The log quasi likelihood is
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(13)  £p = ——"In(2m) —ZIn|68" + 3| — 3 X, [AL)p] (88" + ) [AWL)p.],

with T being the sample size. As the cointegrating matrix 8 is known, the maximisation can be
equivalently done in two steps: (i) run the OLS on (2) to estimate A(L) and produce the residuals é; =

A(L)yy; (i) estimate [Z, 8] by maximising the concentrated log quasi likelihood
n T ’ 1 T Al ’ —1a2

When the conditional mean in (2) and the variance in (9) are correctly specified, and the conditions of
Theorem 1 are met, the quasi maximum likelihood estimators [/T(L),f, S] are consistent and

asymptotically normal; see Bollerslev and Woolridge (1992).

The parameters (Z, §) are over-identified for n > 3, as there are more equations in (9) than the
parameters at the right-hand side of (9). This feature makes it possible to test whether or not data fit in
the factor error structure (8) by using an over-identification test. With the null hypothesis being (9), the

test can be implemented by the likelihood ratio statistic
(15) LRy =2[¢7(Q) — ¢7(E, 8)]
where {’T(ﬁ) is the maximised log likelihood of the reduced-form VECM in (2), which is the unrestricted

model; and £7(Z, 3) is the maximised value of (14). Under mild conditions, LR} has an asymptotic null
distribution of y2 with n(n+ 1)/2 —2n =n(n —3)/2 degrees of freedom when &, is normally
distributed (see Gourieroux and Monfort (1989, Vol.2, p107)). Given that the normality of & is not
guaranteed in practice, the AIC and SIC information criteria may also be used to assess the adequacy of
the factor error structure. Specifically, the criterion difference between the reduced-form model (2) and

the factor error structure (8) is
(16) dT = LRT - kT(TL - 3)/2,

where k; = 2 for AIC and k; = In T for SIC. The factor error structure is not rejected by the information

criterion if dy < 0.

For n = 3, the null distribution for the test in (15) is not applicable. In this case, when the
parameters in (8) are identified under the conditions of Theorem 1, they can be estimated from (14).
Further, if (8) is the true data generating process, the parameters can also be solved from (9). Hence, if

the parameters cannot be solved from estimated  in (9), then (8) must be a mis-specification. The
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following theorem details conditions under which the factor error structure (8) is compatible with the

reduced-form variance Q (hence a correct specification) whenn = 3.

Theorem 2. Consider the case of n = 3. Let the elements in a positive definite matrix () be w;; fori,j =
1,2,3. Then § = [81,8,,63]" and £ = diag[a?, 67, 62] can be solved from (9), expressible as functions of
wyj, and unique up to a sign change for 6, if and only if (i) w1, W13W23 > 0; (i) W11 = W1,W 3/ W33, Wap =

W12Wa3/ W13, AN W33 = Wy3W13/ W17
Proof of Theorem 2. First, (9) can be written as

—_ g2 2 —
Wi = 61: +O'L- ; a)i]- = 616

i) ,j=123, j>Ii.

These imply that 62 = w;,w;3/w,3 and 62 = w;; — 82, which hold if and only if the stated conditions
hold. Then, §; can be solved as either of +,/w1,w13/w,3, i.€., unique up to a sign change. It follows that
8, = w12/61, 63 = w13/81, 05 = wy, — 63, and 05 = w33 — 65 also exist as functions of w;; if and only

if the stated conditions hold. m

Under the conditions of this theorem, the likelihood ratio statistic in (15) is exactly zero forn =
3. Therefore, (15) is also useful to check whether the factor structure fits data for n = 3. If (15) yields a
zero, the factor error structure is an equivalently alternative description of the reduced-form error term

and is ideal for measuring the information contributions of markets.

11.4 Comparison with exiting price discovery measures

When an asset is traded in multiple markets, information content measures in the literature are
largely based on the VECM in (2), with different treatments of the reduced-form shock vector &;. To see
the differences, we write &, = Wz, where W is a n X n matrix; z; is an X 1 structural shock vector with
zero mean and diagonal variance matrix. Authors typically aim to interpret the structural shock z; . in z,
as the information contribution of market i. In general, z; ; may affect other markets contemporaneously.
The efficient price change is decomposable as Am; = h'Wz, = ¥ ; h'W;z; ¢, where W; is the ith column

of W and h=[a|®(1),] ta] is defined under (6). The information shares (h’Wi)ZGZZ_i/

2
;-lzl(h’l/l/}-) azz_j, where O'ZZ’l- is the variance of z; 4, are readily computed from this decomposition as the
structural shocks in z; are uncorrelated. The main issues within this framework are the identification of

W and the identification of individual shocks in z;, which need extra assumptions or restrictions.

The assumption used by Hasbrouck (1995) is W = F, where F is the lower-triangular Cholesky

factor of Q (such that FF' = Q) and the variance of z; is I,,. This implies that the shock z; ; has no effect
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on market j for any j < i at time t. In the case where there are no correlations amongst the shocks in &,
F becomes diagonal and this strategy will work well. However, in practical scenarios where the reduced-
form shocks in &; are correlated, the information shares computed with W = F depend on the order of
the log prices placed in p;. Hasbrouck (1995) suggests computing the information shares for all n!

Orderings of prices in p;, and then finding the lower and upper bounds for each market’s contribution.

A refinement to the approach of Hasbrouck (1995) is Grammig and Peter (2013), who use a result
of Lanne and Liitkepohl (2010) to exploit the fact that W is identifiable (up to column permutations) when
z; follows a mixture of normal distributions. In this case, the variance of z; is a weighted average of [,
and a diagonal matrix. To identify the shocks in z; (or resolve column permutations of W), Grammig and
Peter (2013) further assume that the self-effect of shock z; ; is positive (w;; > 0) and greater than the
cross-effects (wy; > |wy;| for j # i), where w;;’s are elements of W. The authors argue that these

assumptions are practically plausible and useful for identifying market-specific shocks.

Another information contribution measure, also based on the VECM in (2), is known as
component shares, see Booth, So and Tse (1999), and Harris, Mclnish and Wood (2002). The component
shares are inspired by the permanent-transitory decomposition of Gonzalo and Granger (1995), where
the log price p; vector is decomposed into a permanent or I(1) component y; and a transitory or 1(0)
component x;: p; = A1y, + Ax,, where y, = ap,. With a, ; being the ith element in a;, the
component share for market i is defined as CS; = al,i/Z}l:l a, ;. Hasbrouck (2002) points out the y; is
generally not a martingale. Further, Yan and Zivot (2010) and Putnins (2013) suggest that a combined use
of the component share and Hasbrouck (1995) information share can help sort out confounding effects

of permanent and transitory shocks.

In addition to the VECM, De Jong and Schotman (2010), and Ozturk and van Dijk (2017) use
unobserved component (UC) models to measure information contributions. The UC information shares
are based on the contributions to the efficient price change of the deviations in d; = p; — t,m;_;. The
main assumption in the UC model is that the variance matrix of d; is diagonal, which permits decomposing
the R-squared in the regression of Am; on d; into the contributions of the elements in d;. The authors

argue that this assumption is more plausible than assuming the diagonality of () in the VECM.

The paradigm of this literature so far has been the belief that one can break up the efficient price
change into exactly n market-specific shocks. We challenge this paradigm by arguing for the importance
of common information in price formation and presenting empirical support (see Section 4). Our

information share measures are based on a testable assumption (i.e., factor error structure) that is
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supported by our empirical analysis. They reflect the contributions to the variance of the efficient price

by individual markets and the common shock, which existing measures are unable to attain.
. Data and Summary Statistics

We use the same data as in Hasbrouck (2021a). We extract quote and trade prices of IBM from
Oct 3 to Nov 11 of 2016 from WRDS Trade and Quote (TAQ) database. Unlike in Hasbrouck (2021a), each
quote and trade has only one “exchange timestamp” in our data. All other aspects of our data are the
same as in Hasbrouck (2021a). Our numbers of trades and quotes across exchanges are identical to
Hasbrouck’s Table 5. We construct returns between 9:45 am and 4 pm at 0.01, 0.1, 1, and 2 seconds. The
0.01 second interval is long enough to allow simultaneous price changes in multiple markets after an
information event. Mid-quote returns are used when estimating information shares across exchanges.

Trade returns are based on transaction price

Table 1 reports the daily percentage of periods with 0, 1, and 2 price changes at different sampling
intervals. At 0.01 second, 99.2% of periods have no quote change and 99.6% have no change in trade
price. At 10° second intervals, one would expect a tiny percentage of periods with price changes. It would
require a large number of lags to capture return dynamics, say over 10 seconds. At 1 second intervals, the
frequency of price change increases substantially to 32.5% (=16.6%+15.9%) for quotes and 28%
(=21.2%+6.8%) for trades. It increases to over 45% at 2 second intervals for both quotes and trades. If
price changes are proxies for information arrivals to the market, e.g. Du and Zhu (2017), information

arrivals are negligible at sub-second intervals, and become noteworthy at 1 second intervals.

When prices do change, it is quite often that prices in different markets, of quotes and trades,
change in the same period. Among periods with quote changes, the percentage of periods with 2 price
changes is 0.21/(0.58+0.21) = 27% when sampled at 0.01 second. It increases to 34% at 0.1 second, 49%
at 1 second, and 57% at 2 second. For trade price, the percentage of 2 price changes among periods of
non-zero price changes is between 13 to 29%. This explains the relatively high return correlations across
markets reported in Table 2. Across exchanges, return correlation increases from 0.465 at 0.01 second, to
0.617 at 0.1 second, to 0.757 at 1 second, and to 0.816 at 2 second intervals. At all sampling intervals,
return correlations between quotes and trades are lower than those across exchanges. This is because
there are 14 times more quotes than trades; Hasbrouck (2021a, Table 2). It is less likely to have changes
in quotes and trade prices in the same period. Quotes are more evenly distributed across markets,
with33% on NYSE and 67% on other exchanges; Hasbrouck (2021a, Table 4 Panel B). Itis more like to have
simultaneous quote changes in different markets.
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Table 1: Frequency of Zero and Non-zero Returns

This table reports summary of the daily percentage of periods with 0, 1, and 2 non-zero returns at different sampling intervals.

Sampling Interval 0.01 second 0.1 second 1 second 2 seconds
Non-zero Returns 0 1 2 0 1 2 0 1 2 0 1 2
Mid-quotes
Average 99.2% 0.58% 0.21% 94.3% 3.73% 1.94% 67.6% 16.6% 15.9% 52.5% 20.6% 26.9%
St Dev 0.2% 0.2% 0.1% 1.4% 1.0% 0.5% 5.8% 2.5% 3.7% 7.0% 2.3% 5.5%
Min 98.6% 0.4% 0.1% 90.5% 2.4% 1.0% 54.4% 11.3% 9.2% 37.7% 14.5% 16.8%
Max 99.5% 1.1% 0.3% 96.5% 6.7% 3.0% 77.7% 23.4% 22.2% 65.4% 25.1% 37.2%
Trade Prices
Average 99.6% 0.38% 0.06% 96.2% 3.10% 0.65% 72.1% 21.2% 6.8% 54.4% 32.4% 13.3%
St Dev 0.1% 0.1% 0.0% 1.1% 0.9% 0.2% 5.2% 3.3% 2.1% 6.3% 3.1% 3.7%
Min 99.0% 0.3% 0.0% 91.9% 2.2% 0.4% 52.7% 16.9% 3.8% 32.3% 27.9% 7.9%
Max 99.7% 0.9% 0.1% 97.3% 6.6% 1.4% 78.4% 33.8% 13.5% 63.2% 43.0% 24.6%

This table reports summary of daily cross-market return correlations at different sampling intervals.

Table 2: Cross-market Return Correlations

Sampling Interval 0.01second | 0.1second | 1second | 2seconds
Mid-quotes (Listing vs Other)

Average 0.465 0.617 0.757 0.816

St Dev 0.051 0.049 0.048 0.045

Min 0.360 0.508 0.649 0.705

Max 0.586 0.734 0.855 0.899

Quotes against Trades

Average 0.246 0.341 0.438 0.501

St Dev 0.047 0.061 0.078 0.088

Min 0.123 0.176 0.206 0.222

Max 0.307 0.416 0.534 0.612
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V. Common and Market-specific Information Shares

This section reports the estimated common and market-specific information shares for IBM from
Oct 3 to Nov 11, 2016, as in Hasbrouck (2021a). We have only one timestamp, therefore are unable to
compare the information shares based on the participant time and the securities information process
time. We estimate the information shares of the listing exchange and other exchanges. We also estimate
the information shares of quotes and trade prices. The main finding is that the common information
accounts for over 90% of the information flow at 1 and 2 second intervals. It dominates the idiosyncratic

information shares of individual markets or price series at 0.01 and 0.1 second intervals.
Model specification and estimation

Theorem 1 requires n = 3 for the 2n parameters in (10) to be identified from n(n+1)/2 equations
in (9). Since n =2 in our applications, we set §; = §, to achieve identification. This is reasonable when

most investors trade on both markets.

The VECM in (2) is estimated daily for the four sampling intervals. Following Hasbrouck (2021a),
the number of lags in the VECM is determined by 10 seconds, i.e. 1000 lags at 0.01 second, etc. The results
are very similar when we use 30 seconds to determine the lag length. Because of the longer sampling
intervals, the number of lags and coefficients are much smaller than those of Hasbrouck (2021a), avoiding
the need for parameter restrictions and the use of bridging approximation. As in Hasbrouck (2021a), the

standard errors of the CIS and MIS are based on the standard deviations of daily estimates.

Table 3 reports the numbers of lags, the number of parameters, and the percentage of significant
coefficients. As the sampling intervals between 0.1 to 2 seconds, the percentage of significant coefficients
is relatively stable between 33.3% to 35.9%. It reduces sharply to 22.4% at 0.01 second. It appears that

model fit of the VECM deteriorates at ultra-high frequencies.
Common information shares

Table 4 reports the average common information shares between the listing and other exchanges,
and between quotes and trade prices, from Oct 3 to Nov 11, 2016. The main feature is the high common
information shares. At 1 and 2 second intervals, the CIS is 90 to 94% across exchanges, and 85 to 90%
between quotes and trades. At sub-second intervals, the common information is more than 60% of the
total information flow. The daily minimum CIS is 58 to 90% across exchanges and 38 to 64% between

quotes and trades. The standard deviations of the daily CIS are small and the average CIS are significantly
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Table 3: Lags, Parameters, and Significance

This table reports the numbers of lags and parameters, and the percentage of significant coefficients, at
different sampling intervals on Oct 3, 2016. The significance level is 5%.

Sampling Interval | 0.01second | 0.1second | 1second | 2seconds
Lags 1000 100 10 5
Parameters 4002 402 42 22
% Significant 22.4 35.9 34.2 33.3

Table 4: Common Information Share

This table reports the common information shares between the listing and other exchanges, and
between quotes and trade prices at different sampling intervals.

Sampling Interval 0.01second | 0.1second | 1second | 2seconds
Listing and other exchanges
Average 0.658 0.788 0.904 0.940
St Dev 0.042 0.039 0.022 0.020
Min 0.583 0.674 0.857 0.895
Max 0.778 0.889 0.962 0.985
Quotes and trades
Average 0.594 0.748 0.858 0.899
St Dev 0.082 0.084 0.076 0.076
Min 0.377 0.514 0.621 0.635
Max 0.702 0.863 0.963 0.993

Figure 1: Daily CIS between Listing and Other Exchanges
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greater than zero at 1%. For the CIS across exchanges, both the standard deviations and the Min-Max
range decrease as the sampling interval increases. For the CIS between quotes and trades, both are stable
across sampling intervals. The CIS is estimated from simultaneous price changes across markets, is directly
related to the cross-market return correlations: the longer the sampling interval, the stronger the cross-

market return correlation, the higher the CIS. That is indeed the case in Tables 2 and 4.

Table 4 shows that the CIS across exchanges are higher than the CIS between quotes and trades,
especially at 0.01 second. This may reflect the greater frequency and price impact of public news than
private information/beliefs transmitted via order flows. To the degree that quotes reflect more public
news, quotes across different markets have similar arrival rates and greater common components. To the
degree that trades reflect private demand for transactions, they are triggered by different events and
often reflect different opinions or information. Therefore, trades occur less frequent and innovations in

transaction prices are less correlated with innovations in quotes.

Figure 1 plots the daily CIS between listing and other exchanges at different sampling intervals.
The plot for the daily CIS between quotes and trades is very similar. The daily CIS are highly correlated
across all sampling intervals, but particularly for 1 and 2 second intervals. On Oct 18, all four CIS estimates
has large increases, followed by large reversals. Both the CIS stability and high correlations are like the
result of the high persistence in public information arrivals. The daily CIS at sub-second intervals have

larger variations. Occasionally they move in opposite directions, e.g. around Oct 31, 2016.
Market-specific information shares

Table 5 reports the average information shares of the listing exchange (NYSE) and other exchanges
over the sample period. After accounting for the common information across exchanges, the market-
specific information shares are substantially lower than those reported by Hasbrouck (2021a), i.e. 40% for
the NYSE and 60% for the other exchanges. At 0.01 to 1 second intervals, the information shares of other
exchanges are slightly higher; but the differences are not significant at 5%. At 2 second intervals, the
information share of the NYSE is statistically higher than that of the other exchanges; but both are
numerically very small. At sub-second intervals Even at 0.01 second intervals, the sum of market-specific

information shares is much lower than their common information shares in Table 4.

Table 6 reports the average information shares of quotes and trade prices. The striking result is
that after accounting for the common information and the information content of quotes, the information

share of trade prices is not significantly different from zero at 0.1 to 2 second intervals. The information
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Table 5: Listing versus Other Exchanges

This table reports the average daily information shares of the listing and other exchanges, after
accounting for their common information.

Sampling Interval 0.01second | 0.1second | 1second | 2seconds

Listing exchange

Average 0.160 0.099 0.051 0.036

St Dev 0.038 0.032 0.019 0.017

Min 0.096 0.052 0.022 0.014

Max 0.239 0.172 0.108 0.083
Other exchanges

Average 0.181 0.111 0.044 0.024

St Dev 0.050 0.035 0.017 0.013

Min 0.082 0.049 0.015 0.002

Max 0.272 0.179 0.088 0.060

Test for Difference
t stat -1.83 -1.35 1.49 3.32

Table 6: Quotes versus Trade Prices

This table reports the average daily information shares of quotes and trade prices, after
accounting for their common information.

Sampling Interval 0.01 second | 0.1second | 1second | 2seconds
Quotes
Average 0.362 0.230 0.128 0.090
St Dev 0.077 0.077 0.070 0.071
Min 0.184 0.102 0.036 0.003
Max 0.563 0.426 0.350 0.339
Trades
Average 0.043 0.022 0.014 0.011
St Dev 0.029 0.022 0.017 0.016
Min 0.012 0.002 0.000 0.000
Max 0.126 0.089 0.070 0.063
Test for Difference
t stat 21.44 14.08 8.71 5.90
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shares of quotes are relatively high and statistically significant at 0.1 and 1 second intervals. After
accounting for the common information, trade prices have no independent information content. This is
consistent with the high quote information share of 65% relative to trades (35%) reported by Hasbrouck
(2021a). It provides direct support to central role of limit orders in price discovery documented by

Brogaard et al. (2019), and their observation of “price discovery without trading”.
Common information shares over time

The dominance of the common information deserves further attention. Economically, it reflects
the price impact of public information flow, e.g. news and order flows, versus the price impact private
information and belifs. Econometrically, it captures the high contemporanous return correlations across
exchanges at different sampling intervals. Malceniece et al. (2019) show that the highly correlated trading
strategies of HFT sharply increased return correlations across stocks. They may have also increased return
correlations across exchanges, especially at time intervals beyond human reaction. The proliferation of
HFT started after the SEC passed Reg NMS in 2005. To see how the CIS increased over time, we estimate
the CIS between exchanges in 2000 before the HFT proliferation, and in 2008 at the start of the HFT

proliferation. The sample period is October and early November of each year.

Figure 2 depicts the 1-second common and market-specific information shares in October and
early November of 2000, 2008, and 2016. We see the average CIS has sharply increased over time. In
2000, trading was much slower: the few fully automated trading platforms at the time had execution time
in the seconds (Haldane, 2010). Returns sampled at 1 second are sparse and have low cross-market
correlations, resulting in the average CIS just 11.8%. The floor specialists at the NYSE dominated the
pricing of IBM, and other exchanges had negligible information. Ignoring the common information across
markets may not have a distorting effect on the estimation of market-specific information share. By 2008,
HFT was highly profitable? and has begun to proliferate. HFT increases trading intensity and cross-market
correlations. The average CIS increases to 67.1%, dominating the combined MIS.® The optic cable using
dark fiber in a straight line between Chicago and New York became operational in 2010. HFT firms have
continued to advance their trading technologies and strategies, further synchronizing price changes across
markets. By 2016, the cross-market return correlation at 1-second interval is 0.757 (Table 2), and the

average CIS has increased to 90.5% (Table 4).

2 Menkveld (2013) reports an estimated Sharpe ratio of 9.35 for an HFT firm trading in Europe in 2008.
3 The low MIS of the NYSE is consistent with the finding of Grammig and Peter (2018, Figure 3 panel B) that the NYSE
has the lowest monthly information share in Oct-Nov 2008.
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Figure 2: IBM Information Shares at 1-Second Interval
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V. Conclusion

When a risky asset is traded in multiple markets, this study proposes a price discovery model that
decomposes price innovations in different markets into a common component and a market-specific
component. The separation of the cross-market common information overcomes the economic and
econometric issues in the Hasbrouck model, e.g. the “who-moves-first” interpretation of price discovery,
and the need for ultra-high frequency data to disentangle cross-market return correlations. We find that
cross-market common information has increased with the proliferation of HFT. It dominates price
discovery across sampling intervals at 0.01 second or longer. The common information share increases
monotonically as the sampling interval increases. After accounting for the common information share,
the market-specific information shares of the listing and other exchanges are not statistically different.

Quote prices contain significant information but trade prices do not.
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